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LETTER TO THE EDITOR 

New Virasoro and Kac-Moody symmetries for the 
non-linear a-model 

Bo-yu Hout and Wei Li 
Institute of Modern Physics, Northwest University, Xian, China 

Received 30 April 1987 

Abstract. In this letter, we give new linearisation equations for the O ( 3 )  non-linear u-model 
which are similar to those obtained in the stationary axially symmetric Einstein field 
equations. By using the linearisation equations, we confirm the existence of the infinite- 
dimensional symmetries, which are dependent on a spectrum parameter, in the O ( 3 )  
non-linear cr-model. The relationships between our hidden transformations and the 
infinitesimal Riemann-Hilbert transformation are discussed. 

For the principal chiral model, there exists a transformation of the hidden symmetry 
with a spectrum parameter in a Lax pair to leave the equation of motion invariant [ 13. 
By expanding in powers of the spectrum parameter, the algebra of the transformation 
is known to be the Kac-Moody algebra without a central extension [2]. Further 
investigation shows that the hidden transformation originates from the Riemann- 
Hilbert transformation which was first introduced by Zakharov and Milkhailov [3], 
and the relationships between these transformations have been discussed in [4]. 
However, in addition to the transformation structure [5] arising from the Geroch 
symmetry [6] there is also found another type of hidden transformation [7] related to 
the Virasoro symmetry which has received much attention recently [8] for the stationary 
axially symmetric Einstein field equations. This motivates us to search for similar 
structures of other models. 

Although the hidden transformation analogue to the above for the non-linear 
a-model was given in [9] the connection between the hidden transformation and the 
Riemann-Hilbert transformation involving the Kac-Moody symmetry was not made 
clear [lo], and no transformation was found to correspond to the Virasoro symmetry. 
The purpose of this letter is to construct such transformations that can be used to 
confirm the existence of the Kac-Moody symmetry and the Virasoro symmetry for the 
non-linear a-model. 

We should indicate that the situation considered here is entirely different from that 
of the quantum field discussed by Witten and others [8,11]. In the latter case the 
operators of the Kac-Moody algebra are extracted from the quantised commutators 
of the current-current which contain the Schwinger term and the operators of the 
Virasoro algebra are constructed from moments of the stress-energy tensor. The central 
extensions of both the algebras emerge naturally from the Schwinger term and the 
trace anomaly. The necessary and sufficient condition for the existence of both the 
infinite-dimensional symmetries is that the system must possess the Wess-Zumino term. 

t A special member of the Center of nleoretical Physics, CCAST (World Laboratory). 
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Nevertheless, our symmetries are independent of the Wess-Zumino term and the 
Poisson bracket relation. In our case, the operators TE and L, of the Kac-Moody 
algebra and the Virasoro algebra are defined as the classical transformations of Lie 
algebras, which operate in the tangent space of the solution manifold and generate 
new solutions from the known one for the equation of motion. It is easy to see that 
Lo is unbounded above and below and the unitary conditions are not satisfied by the 
operators TE and L, so that we can establish the non-unitary and non-highest weight 
representations of both the Kac-Moody algebra and the Virasoro algebra without the 
central extensions. Readers should note these differences between the quantum level 
and the classical level. 

This letter is organised as follows. We present the self-dual equations of a complex 
potential for the O(3)  non-linear a-model and then derive the linearisation equations 
similar to the Hauser-Ernst equations in order to replace the usual Lax pair [ 9 ] .  We 
verify the integrability of the linearisation equations by the existence of the self-dual 
equations. Two infinitesimal transformations are then given and invariance of the 
self-dual equations under these transformations is proved. Both transformations are 
then reformulated as infinitesimal Riemann-Hilbert transformations. With the new 
formalism it is not difficult to calculate the commutators of the transformations that 
evidently form the semidirect product of the Kac-Moody algebra and the Virasoro 
algebra. 

For the O ( 3 )  non-linear v-model, the Lagrangian has the form 

2= i Tr(a,N(x)a,N(x))  p =o, 1 ( 1 )  
with the constraint 

N*(X) = a21 

where a is a real constant, I is a 2 x 2  unit matrix and 

N ( x ) =  N a ( x ) g a  N + ( x )  = N ( x )  
3 

a = l  
( 3 )  

and a a ( a  = 1 , 2 , 3 )  are the Pauli matrices, + denotes the Hermitian conjugate and 
a,, = a / a x @  ( p  = 0, 1 ) .  According to the Lagrangian we induce the equation of motion 

a ,  ( N P N )  = 0. (4) 
From the above equation, the twist potential X is defined as 

a,x = a - l E , , , ~ a u ~  
where col = -cI0 = 1 and cm = e l l  = 0. Because of the feature of the Hermiticity for N, 
we have 

( 6 )  a,(x + X + )  = 0. 

x + + x  = 2 p I  (7) 

If one chooses Tr X = 2 p  where p is a real constant, one can obtain a relation 

where I is a 2 x 2 unit matrix. In general, a = 1 and p = 0 [9] but we need not impose 
such restrictions on a and p for our purpose. We shall see it is helpful to express the 
Virasoro symmetry of the model in terms of a and p. 

Now we derive the self-dual equations 

2pa,E +2a~, , ,d”E = ( E  + E+)a,E (8) 
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by introducing a complex potential 

E = N + X .  

If the dual operation is defined as 

*d( = d& *dV = -d7 (9) 

in the light-cone coordinates 6 = i (xO+ x ' )  and 7 = $(xo- XI), equation (8) can be 
re-expressed in differential form 

2(P + a*) dE = ( E  + E + )  d E  

t d E  = A( t)r( t )  

d F (  t )  = r( t ) F (  t )  

A ( t )  = I - t ( E  + E+) (13) 

r ( t )=  t [ l -2 t (P+a*)] - 'dE.  (14) 

F ( 0 )  = I (15) 

(10) 

or equivalently 

(11) 

which is shown to be integrability of the following linearisation equations: 

(12) 

where F (  t )  is a 2 x 2 matrix function of t ,  6 and 7, where t is a parameter and 

Without loss of generality, we select some auxiliary conditions on F ( t )  

F(0) = E 

F (  t )"A( t ) F (  t )  = I 

det F ( t )  = A - ' ( t ) = [ ( l  -2/3f)2-(2af)2]-"2 

On the other hand, the usual Lax pair has the following form: 
where P (  t )  = ( d / a t ) F (  t ) ,  F (  t ) "  = F+( I )  and I is the complex conjugate of t. 

dgU(y) =-$(I  - l / y ) ( l / a 2 ) N  dgNU(y) 

d,U(y) = -;(I - r ) ( l / a 2 ) N  d,NU(y) 

where U ( ? )  is a Hermitian matrix and y a parameter which is connected to t by 

1 - af( t )  = ( 1 - 2 t (/3 + a )) ''2 

1 + aj-( 1 )  1 +2t (P  -a) Y = -  

Comparing (12) with (19), we find that both are equivalent if 

In the following discussion we shall demonstrate that the new linearisation equations 
have more advantages than the old since the Kac-Moody symmetry and the Virasoro 
symmetry are explicitly contained in the new but not in the old. This is why we 
introduce the new linearisation equations instead of using the usual ones. In this way, 
we can further understand the similarity of the O(3) a-model and the axially symmetric 
stationary Einstein field equations [ 121. 
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Let us now take account of the infinite-dimensional symmetries hidden in the model. 
As for the stationary axially symmetric Einstein field equations [6,7], we give two 
infinitesimal transformations 

L ( s ) E  = - P ( s ) F - ' ( s )  (22) 

T " ( s ) E  = -(i/s)(F(s)cT,F-'(s) - g o )  (23) 

and 

where F (  s )  satisfies (12). For convenience of discussion, the infinitesimal constants 
are deleted here. We prove that the transformations (22) and (23) are both the symmetric 
transformations of (10). For simplicity we give only a sketch of the proof that (10) 
remains invariant under the transformation (22), i.e. 

2(p + a*) d( L ( s ) E )  + 2( L(s)P + L ( s ) a * )  d E  

= ( E  + E + )  d( L ( s ) E )  + ( L ( s ) E  + L ( s ) E + )  dE. (24) 
Firstly it is necessary to transform a and p. From p = Re(Tr E )  we have 

L ( s ) p  = -: Re(Tr F ( s ) F - ' ( s ) )  =:A-'(s)A(s) 

- p ( 1  -2Sp)+2saZ 
( 1 - 2sp )2  - (2sa ) * 

- -  

By using (2), (13) and (17), we obtain 

Evaluating the exterior derivative of (22) and exploiting 

2(p + a*)r(s) = ( E  + E+)r(s) = -A(s)r(s) 

2(p + a*) d( L ( s ) E )  = ( E  + E + )  d( L ( s ) E )  - [ E  + E + ,  P (  s ) F - ' ( s ) ] T (  S )  

2( L( s ) p  + L( s ) a  *) d E  = ( l / s )A(  s)T( s). 

we see that 

(27) 

(28) 

and 

In terms of (13) and (17), it is easy to derive 

( L ( s ) E  + L( s ) E + )  d E  = -( P ( s ) F - ' ( s )  + F - ' ( S ) ~ & ( S ) ~ ) (  l /s)A(s)T(s) 

= - [ E +  E + ,  P(s)~-'(s)]r(s)+(i/s)A(s)r(s). (29) 

We demonstrate the identity of (24) after summarising (27)-(29). 
It is apparent that a and p play an important role in exploring the symmetry 

discussed above because if a and p do not occur the symmetry will be broken down. 
This is the reason that we previously introduced a and p. However, a and p become 
trivial under the transformation (23) since 

T " ( s ) a  = T"(s)P =o. 
We should consider the variance of N ( x )  under both the transformations (22) and 

(23). By means of the relations (20) and (21), we have 
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and 

which can be used to generate the infinite conservation currents from the Lagrangian 
of the system. Similar transformations appear in [9] except for lacking the first term 
of (30)  and the coefficients of the rest terms. However, the previous transformations, 
unlike our transformations, do not possess the properties of the infinite-dimensional 
Lie algebras. 

Furthermore, we substitute the transformations (22 )  and (23)  into (12)  to obtain 
the corresponding transformations of F (  t ) ,  

t 
t - s  L ( s ) F ( t )  = - - ( t P ( t ) F - ' ( t )  -sF(s)F-'(s))F(~) (32)  

and 

i t  

t - s  
T"(s)F(t) = - - ( F (  t)c7,F-l( t )  - F(s)raF-'(s))F(t) (33 )  

respectively, which are compatible with auxiliary conditions (15)-(  18) .  
Expanding L ( s )  and T " ( s )  in powers of 

Jc 3c' 

L ( s )  = LkSk T " ( s ) =  TEsk 
k = O  k = O  

(34)  

we express the transformations (32)  and (33)  in the infinitesimal Riemann-Hilbert 
transformations 

and 

where CO,, represents a circle C surrounding poles at y = 0, t. 
By using (35)  and (36) ,  we can now calculate the following commutators: 

[ L m ,  L n I F ( t ) = ( m - n ) L , + " F ( t )  (37 )  

[L ,  T ~ I F ( ~ )  = - n C + n ~ ( t )  (38)  
[ T i ,  T i ] F ( t )  = 2ieabcTCn+,,F( t ) .  (39)  

Obviously, the infinite series of operators L, and T: form the semidirect product of 
the Virasoro algebra and the Kac-Moody algebra, and the generating function F ( t )  
provides the representations of the semidirect product algebra which are non-unitary 
and non-highest weight as mentioned before. 

Since a similar procedure to the proof of the commutator (39 )  can be found in 
[13] for the two-dimensional Heisenberg model we need only verify the commutator 
(37) .  Starting with 
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we have 

- n + l  - m + l  -y  z )F(z)F- ' (z)  

- n + l  - m + l  -y z )P(Z)F-'(Z) 

(40) 

For the first term at the second step, because y = t is not a pole for the integrand, the 
circle CO,, is selected as a circle CA lying inside CO,,, and CO,,,, as CO,,. In the second 
term, CO,,,, can only be expressed as CA since the contribution from the pole at z = y 
is equal to zero. At the final step the first two terms may cancel each other if y and 
z are interchanged in one of them. Hence, there remains the last term to be calculated. 
If we set 

- n + l  - m + l  -y z )F(z)F- ' (z) .  

CE 

F( z)F- '(  z) = 2 M'k'zk 
k = O  

then 

Finally we substitute the above relation into (40) to yield the commutator (37). 
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In our previous papers [7], we had to introduce an infinite hierarchy of the 
Kinnersley-Chitre potentials 

to compute the commutators (37)-(39). The actions of L k  and T f :  on the Kinnersley- 
Chitre potentials N ( m 3 n )  are, respectively, 

~ ~ ~ ( m . n )  = - ( ( m  + k ) N ( m + k J ) +  n N ( m , n + k ) +  C ( k - p ) ~ ( m , ~ ) ~ ( k - ~ , " )  ) 

and 

T f : N ( m . n )  = - y , ~ ( m + k , n ) +  N ( m , n + k ) y a  + N ( m , p ) y , N ( k - p , n )  k s O ,  yo =ia,. (44) 

However, our treatment in this letter avoids introducing such auxiliary quantities and 
our calculation becomes much simpler than before. 

In the past we also indicated that the operators L k ( k  = 0, il) form the transforma- 
tions of the Cosgrove group [ 141. For the O(3) non-linear u-model we can constitute 
a group in the same way. In the self-dual equations (lo), there are two trivial 
transformations 

k 

p = l  
k z O  

(43) 

k 

b = l  

and a non-trivial transformation 

( d ) , E  = F1( t )P(  t )  

In fact, the non-trivial transformation is the dual transformation given in [9]. From 
(45)-(47) one can show that R, Z and indeed form the group that is isomorphic to 
a SL(2,  R )  group. 

One of the authors (WL) is very grateful to Professor D H Luan for helpful suggestions 
and comments. This work was partially supported by the National Natural Science 
Foundation of China. 
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